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ABSTRACT
Propositional satisfiability solving (SAT) has been one of the most
successful automated reasoning methods in the last decade in com-
puter science by solving a wide range of both industrial and aca-
demic problems. One of the most widely used constraint during the
process of translating a practical problem into a SAT instance is
the at-most-one (AMO) constraint. Many studies on SAT encodings
of the AMO constraint have been reported in the literature, how-
ever thorough comparisons of these encodings are largely missing.
This paper not only provide such comparisons, but also discusses
the similarity of the SAT encodings of the AMO constraint and
SAT encodings of more general CSPs. More specifically, the paper
empirically evaluates the most well-known AMO encodings on
three state-of-the-art SAT solvers of a number of benchmarks and
provides some guidelines for efficient SAT encodings of the AMO
constraint leading.

CCS CONCEPTS
•Theory of computation→Automated reasoning; Constraint
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1 INTRODUCTION
SAT solving comprises two essential phases: encoding a certain
problem into a SAT instance, and then finding solutions by advanced
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SAT solvers. Notwithstanding the steadily increasing diffusion and
availability of SAT solvers, understanding of SAT encodings is still
limited and challenging. To use state-of-the-art SAT solvers for
solving constraint satisfaction problems (CSPs) requires these to
be previously encoded as SAT instances [1, 7, 18, 29, 31, 34, 38, 39].
Such encodings should not only be efficiently generated, but also
lead to efficiently solving by SAT solvers. At present, mapping a
CSP into a SAT instance is still largely regarded as more of an art
than a science ([17, 24, 33, 39]), and detailed studies of different
encodings are needed in order to better understand their behaviour
in different settings.

Among the many encodings proposed to map CSPs into SAT
[17, 30, 34, 38, 39], the most straightforward are the direct encoding,
first described by Kleer [12] and further studied by Walsh [39], and
the support encoding by Gent [17].

Both encodings require the at-least-one (ALO) and at-most-one
(AMO) constraints to enforce that a CSP variable is assigned to
a single value within its domain. If the ALO constraint can be
easily encoded by a single SAT clause, the encoding of the AMO
constraint is more complicated and has been intensively studied
[10, 14, 25, 32, 35], also because many applications such as computer
motographs [5], partial Max-SAT [3], or cardinality constraints [14]
contain the AMO constraint.

Generally, different AMO encodings yield different sizes and
different behaviour from the SAT solver being used. Since the un-
derstanding of why a particular encoding performs better than
others is still largely missing, in this paper we compare different
encodings with respect to the following features:

• the number of variables required (search space),
• the number of clauses required (overhead when propagating
variable assignments),

• the strength of the encoding in terms of performance of unit
propagation in SAT solvers (e.g. maintaining arc-consistency),

• the length of clauses (e.g. binary),
• the runtime of a SAT solver on benchmark problems.

In addition, other issues are addressed in this paper. Firstly, we
note the similarities between some AMO encodings and the more
general encoding of finite CSPs to SAT and the similarities of sev-
eral AMO encodings that have been proposed albeit with different
names. Next we show, for all benchmarks and different encodings
of the strong correlation between runtime and the number of con-
flicts as well as between the number of conflicts and the number
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of decisions. Finally there are some general conclusions that may
be drawn regarding the behaviour of the encodings in the different
settings (benchmarks an solvers).

The structure of the paper is as follows. In Section 2, we briefly
representwell-known SAT encodings of theAMO constraint, namely
AMO encodings. In Section 3, we compare among these AMO encod-
ings, and show the experimental evaluation. Finally, we conclude
and outline future research in Section 4.

2 SAT ENCODINGS OF THE AT-MOST-ONE
CONSTRAINT

In the direct or support encodings, if a propositional variable is
used to represent the binding of a CSP variable to a particular
value, then the AMO constraint requires that at most one of 𝑛
propositional variables is bound to true. In the following sections,
generally 𝐴𝑀𝑂 (𝑋 ), 𝐴𝐿𝑂 (𝑋 ), and 𝐸𝑂 (𝑋 ) denote the at-most-one,
at-least-one ,and exactly-one clauses, respectively, for the set of
propositional variables 𝑋 .

In CSP solving, arc consistency is a quite effective technique
for its tradeoff between the cost of the constraint propagation per-
formed at each node in the search tree and pruning of the search
space. Most DPLL SAT solvers [11, 21, 28] use unit propagation,
also called Boolean constraint propagation, as its constraint prop-
agation mechanism. Therefore, when translating a CSP to a SAT
instance one should be concerned on whether unit propagation on
the resulting SAT instance enforces arc consistency on the original
CSP. For example, unit propagation of a SAT encoding of constraint
𝐴𝑀𝑂 (𝑋1, ..., 𝑋𝑛) achieves the same pruning as arc consistency on
the original CSP (for the details, see [14, 32]).

2.1 The Pairwise Encoding
This encoding has several different names: the naive encoding [25,
37], the pairwise encoding [35, 36], or the binomial encoding [14].
In this paper, we refer to it as the pairwise encoding. The idea
of this encoding is to express that no pair of two variables are
simultaneously assigned to true, therefore as soon as one literal is
assigned to true, all the others must be assigned to false:

𝑛−1∧
𝑖=1

𝑛∧
𝑗=𝑖+1

(𝑋𝑖 ∨ 𝑋 𝑗 )

The pairwise encoding is a traditional SAT encoding of the AMO
constraint. Although this encoding needs no auxiliary variables,
it requires a quadratic number of clauses. As a result, this encod-
ing produces impractically large formulas on problems with large
domains. The encoding allows unit propagation maintains arc con-
sistency (see Table 1)

2.2 The Binary Encoding
Frisch et al. [15] proposed the binary encoding. Independently, Prest-
wich called it bitwise encoding [35] and used it to successfully solve
a number of large instances of CSPs with a standard SAT solver.

The binary encoding requires newBoolean variables𝐵1, ..., 𝐵 ⌈𝑙𝑜𝑔2𝑛⌉
in the following clauses:

𝑛∧
𝑖=1

⌈𝑙𝑜𝑔2𝑛⌉∧
𝑗=1

⟨𝑋𝑖 ∨ 𝜙 (𝑖, 𝑗)⟩,

where 𝜙 (𝑖, 𝑗) denotes 𝐵 𝑗 (or 𝐵 𝑗 ) if bit 𝑗 of the binary representation
of integer 𝑖−1 is 1 (or 0). The idea is to create the different sequences
of ⌈𝑙𝑜𝑔2𝑛⌉-tuples 𝐵 𝑗 such that whenever any𝑋𝑖 is assigned to true it
is immediately inferred that the other variables𝑋𝑖′ must be assigned
to false, for any 1 ≤ 𝑖 ′ ≠ 𝑖 ≤ 𝑛.

There are two important remarks for the binary encoding. Firstly,
unit propagation maintains arc consistency (see [14]). Secondly, the
auxiliary variables, 𝐵1, ..., 𝐵 ⌈𝑙𝑜𝑔2𝑛⌉ , used by the binary encoding are
the exact variables in the log encoding, first proposed by Iwama and
Miyazaki [23] and latter by Walsh [39], which encodes a finite CSP
domain to SAT.

2.3 The Commander Encoding
Klieber and Kwon [25] described the commander encoding by di-
viding the set 𝑋 = {𝑋1, ..., 𝑋𝑛} of propositional variables into𝑚,
1 ≤ 𝑚 ≤ 𝑛, disjoint subsets denoted by {𝐺1, ...,𝐺𝑚}, and introduc-
ing a commander variable 𝑐𝑖 for each subset 𝐺𝑖 . The commander
encoding is defined as follows.

(1) Exactly one variable in each set𝐺𝑖 ∪ {𝑐𝑖 } is assigned to true:
𝑚∧
𝑖=1

𝐸𝑂 ({𝑐𝑖 }∪𝐺𝑖 ) =
𝑚∧
𝑖=1

𝐴𝑀𝑂 ({𝑐𝑖 }∪𝐺𝑖 )∧
𝑚∧
𝑖=1

𝐴𝐿𝑂 ({𝑐𝑖 }∪𝐺𝑖 ).

where AMO can be encoded either by the pairwise or any
other encoding.

(2) At most one commander variable is assigned to true.
𝑚∧
𝑖=1

𝐴𝑀𝑂 (𝑐𝑖 ),

where AMO can be encoded either by any encoding including
a recursive application of the commander encoding.

The commander encoding also allows unit propagation to preserve
arc consistency (see [14]).

2.4 The Product Encoding
Chen [10] proposed an AMO encoding, named the product encoding,
that uses two sets of auxiliary variables 𝑈 = {𝑢1, ..., 𝑢𝑝 } and 𝑉 =

{𝑣1, ..., 𝑣𝑞 , forming a grid of 𝑝 × 𝑞 points (where 𝑝 × 𝑞 ≥ 𝑛, and
(1) Each variable 𝑋𝑘 , 1 ≤ 𝑘 ≤ 𝑛 is mapped onto a corresponding

point (𝑢𝑖 , 𝑣 𝑗 ), where 𝑢𝑖 ∈ 𝑈 = {𝑢1, ..., 𝑢𝑝 }, and 𝑣𝑖 ∈ 𝑉 =

{𝑣1, ..., 𝑣𝑞}.
(2) Then, the product encoding is obtained as:

𝐴𝑀𝑂 (𝑋 ) = 𝐴𝑀𝑂 (𝑈 ) ∧ 𝐴𝑀𝑂 (𝑉 )
1≤𝑘≤𝑛,𝑘=(𝑖−1)𝑞+𝑗∧

1≤𝑖≤𝑝,1≤ 𝑗≤𝑞
((𝑋𝑘 ∨

𝑢𝑖 ) ∧ (𝑋𝑘 ∨ 𝑣 𝑗 )),
where 𝐴𝑀𝑂 (𝑈 ) and 𝐴𝑀𝑂 (𝑉 ) can be encoded by any encoding,

including a recursive application of the product encoding.
Two notes on the product encoding: a) unit propagation on the

product encoding achieves arc consistency [10]; and b) the auxil-
iary variables, (𝑢𝑖 , 𝑣 𝑗 ) are similar to the variables used to encode a
finite CSP domain into SAT in the representative-sparse encoding,
proposed by Barahona et al. [7].

2.5 The Sequential Counter Encoding
By building a count-and-compare hardware circuit and translating
this circuit to an equivalent CNF formula, Sinz [37] introduced an
encoding of ≤𝑘 (𝑋1, ..., 𝑋𝑛) which he called the sequential counter
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encoding. Here, we only consider the case 𝑘 = 1, corresponding to
the 𝐴𝑀𝑂 (𝑋 ) constraint.

(𝑋1∨𝑠1)∧(𝑋𝑛∨𝑠𝑛−1)
∧

1<𝑖<𝑛
((𝑋𝑖∨𝑠𝑖 )∧(𝑠𝑖−1∨𝑠𝑖 )∧(𝑋𝑖∨𝑠𝑖−1)), (1)

where 𝑠𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1, are auxiliary variables.
Again, two notes are worth mentioning for this encoding: a)

the sequential counter encoding allows unit propagation to achieve
arc consistency (see [14, 36]); and b) the auxiliary variables, 𝑠𝑖
are exactly the variables in the order encoding, used by Tamura et
al. [38], to translate finite CSPs to SAT, as noted, if indirectly, by
Argelich et al. [3]

2.6 The Bimander Encoding
Similarly to the commander encoding, the bimander encoding parti-
tions a set of propositional variables𝑋 = {𝑋1, ..., 𝑋𝑛} into𝑚 disjoint
subsets {𝐺1, ...,𝐺𝑚}, (1 ≤ 𝑚 ≤ 𝑛), such that each subset𝐺𝑖 consists
of 𝑔 = ⌈ 𝑛𝑚 ⌉ variables. However, instead of commander variables,
the bimander encoding introduces a set of auxiliary propositional
variables 𝐵1, ..., 𝐵 ⌈𝑙𝑜𝑔2𝑚⌉ (like in the binary encoding) that play the
role of the commander variables. The bimander encoding is the
conjunction of the following clauses.

(1) At most one variable in each subset can be true. We encode
this constraint for each subset 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑚, by using the
pairwise encoding:

𝑚∧
𝑖=1

⟨𝐴𝑀𝑂 (𝐺𝑖 )⟩. (2)

(2) The following clauses are generated by the constraints be-
tween each variable and commander variables in a subset:

𝑚∧
𝑖=1

𝑔∧
ℎ=1

⌈𝑙𝑜𝑔2𝑚⌉∧
𝑗=1

𝑋𝑖,ℎ ∨ 𝜙 (𝑖, 𝑗), (3)

where 𝜙 (𝑖, 𝑗) denotes 𝐵 𝑗 (or 𝐵 𝑗 ) if bit 𝑗 of the binary repre-
sentation of integer 𝑖 − 1 is 1 (or 0).

Nguyen and Mai discuss the correctness and the complexity in [32],
where they also show that the bimander encoding maintains arc
consistency.

3 COMPARISON AND EXPERIMENTAL
EVALUATION

As mentioned in Section 1, we compare different encodings with
respect to the following features:

• the number of variables required (search space),
• the number of clauses required (overhead when propagating
variable assignments),

• the strength of the encoding in terms of performance of unit
propagation in SAT solvers (e.g. maintaining arc-consistency),

• the length of clauses (e.g. binary),
• the performance of a SAT solver, including:
– the runtime,
– the number of decisions,
– the number of conflicts,
– the memory consumption (MB).

Next, we will discuss the first 4 features in Section 3.1 and the
last feature in Section 3.2.

3.1 Comparison
Table 1 presents the key features of many approaches for encoding
the AMO constraint (column enc). The columns clauses and aux
vars depict the number of required clauses and auxiliary variables,
respectively. The column UPaAC indicates whether the encoding
has the UPaAC property. The column origin refers to the original
publications where the encoding had been introduced. It is worth
noticing that the totalizer encoding proposed by Bailleux al et. [5]
requires clauses of size at most 3, and the commander encoding
proposed by Klieber and Kwon [25] needs𝑚 (number of disjointed
subsets) clauses of size ⌈ 𝑛𝑚 + 1⌉, whereas the product, sequential,
binary and bimander encodings require only binary clauses.

The sequential counter encoding and the bimander encoding are
generalized to encode general cardinality constraints, the at-most-k
constraint (see [37] and [32], respectively). The other encodings are
also generalized by Frisch and Giannaros [14]. The authors studies
SAT encodings of the at-Most-k Constraint. The study of Frisch
and Giannaros is the most closely related to our work, but only one
benchmark (the Pigeon-Hole problem) and only one SAT solver,
MiniSat, were used.

Marques-Silva and Lynce [36] point out that conflict-driven
clause learning SAT solvers can exploit the properties of the se-
quential counter encoding.

Nguyen and Mai [32] point out that the pairwise encoding and
the binary encoding are two special cases of the bimander encoding.
Furthermore, the authors also show that the relaxed ladder encoding
is exactly the ladder encoding without the redundant clauses. Con-
sequently, the relaxed ladder encoding and the sequential counter
encoding are identical. Argelich et al. [3] also noticed that the se-
quential counter encoding is a reformulation of a regular encoding
[2]. In fact, it is a simple matter to prove that the regular encoding
and the ladder encodings are identical.

Summarizing, the relaxed ladder encoding and the sequential
counter encoding are identical. These encodings are obtained from
the ladder or the regular encoding by removing redundant clauses.
One should observe that Tamura et al. [38] used the ladder structure
in the order encoding to translate CSPs to SAT instances in their
SAT-based solving system. Bailleux et al. [6] also used this structure,
in different name - unary representation, during their translation
of cardinality constraints and pseudo-Boolean constraints to SAT
formulas ([5, 6]).

Recently, Martins et. al [27] compared both encodings, the se-
quential counter encoding and the ladder encoding, and the experi-
ment results obtained show very small differences between the two
encodings.

In conclusion, we aim to show that the similarity of the ladder,
sequential, relaxed ladder, regular, unary representation, and order
encodings. We hope that this work could help the SAT community
to avoid the confusion of these encodings.

3.2 Experimental Evaluation
All experiments reported in this section were performed on a 2.66
Ghz, Intel Core 2 Quad processor with 3.8 GB of memory, under
Ubuntu 10.04. Runtimes reported in CPU-time are in seconds. The
used solvers are Riss [26], lingeling [9], and clasp [16] (clasp2.1.3-
x86_64linux) with default configurations, conflict-driven clause
learning SAT solvers, which were ranked first on application and
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Table 1: A summary ofmost well-knownAMO SAT-encodings, where some encodings come from cardinality constraints noted
by CAR.

Encodings clauses aux vars UPaAC origin

pairwise
(𝑛

2
)

0 yes folklore
linear (CAR.) 8𝑛 2𝑛 no [40]
totalizer 𝑂 (𝑛2) 𝑂 (𝑛𝑙𝑜𝑔 (𝑛)) yes [5]
binary 𝑛𝑙𝑜𝑔2𝑛 ⌈𝑙𝑜𝑔2𝑛⌉ yes [15]

sequential 3𝑛 − 4 𝑛 − 1 yes [37]
sorting networks (CAR.) 𝑂 (𝑛𝑙𝑜𝑔2

2𝑛) 𝑂 (𝑛𝑙𝑜𝑔2
2𝑛) yes [13]

commander ∼ 3𝑛 ∼ 𝑛
2 yes [25]

product 2𝑛 + 4
√
𝑛 +𝑂 ( 4√𝑛) 2

√
𝑛 +𝑂 ( 4√𝑛) yes [10]

card. networks(CAR.) 6𝑛 − 9 4𝑛 − 6 yes [4]
PHFs-based (CAR.) 𝑛𝑙𝑜𝑔2𝑛 ⌈𝑙𝑜𝑔2𝑛⌉ yes [8]

bimander 𝑛2
2𝑚 + 𝑛𝑙𝑜𝑔2𝑚 − 𝑛

2 𝑙𝑜𝑔2𝑚, 1 ≤𝑚 ≤ 𝑛 yes [22]

craft benchmarks in different categories at recent SAT competi-
tions1. Due to space of limitations, we show several results among
three SAT solvers since the other results are similars.

For the datasets, we choose 5 benchmarks which are well-known
in Constraint Programming community: Golomb Ruler (CSPLIB
prob006 in [19]), Langford (see prob024 in [19]), Pigeon, Hidoku (see
[20]), Open Shop, and All-interval Series (see prob007 in [19]).

In the following section, we abbreviate pairwise, sequential, com-
mander, binary, product, and bimander encodings as pw, seq, cmd,
bin, pro and bim, respectively. For the AMO commander, and bi-
mander encodings, the set of variables is recursively divided into 2
disjoint subsets since the encoding in that case conducted on our
problems gives a best result in term of the average time.

Fig. 1 compares different AMO encodings on satisfiable Golomb
ruler instances for lingeling. In terms of running times the AMO
commander encoding is the best. The AMO binary and pairwise
and encodings perform well, whereas the AMO product, bimander
and sequential perform very poor. Regardless of different solvers,
we observe that the runtime is somewhat related to the number
of conflicts, whereas the number of conflicts is closely related to
the number of decisions. In term of the memory consumed, a faster
encoding tend to consume less than a slower encoding.

Since Lingeling and Riss3G do not offer the configuration for
finding all the solution for a CNF instance, the langford problem is
only performed by Clasp. A comparison of different AMO encod-
ings performed by Clasp for finding all the number of solutions on
langford instances is shown in Fig 2. It can be seen that the AMO
pairwise encoding is worst than the others, while the AMO se-
quential counter, product, and commander encodings perform quite
similarly, followed by the AMO binary and bimander encodings.
Fig 2 also indicates that the runtime, the number of conflicts, and
the number of decisions have a strong connection.

Fig. 3 summarizes the results of different AMO encodings per-
formed by Lingeling on satisfiable Hidoku instances. Unlike by
Lingeling, The AMO pairwise encoding performs worst, especially
on two last instances. The five other encodings show no clear pat-
tern. Fig. 4 shows the results of different AMO encodings performed
by Lingeling on satisfiable Open Shop instances. Unlike for the pre-
vious problems, the running time has a weak relation to the number
of conflicts.
1http://www.satcompetition.org

Figure 1: Lingeling on satisfiable Golomb ruler instances.

Since Lingeling and Riss3G do not offer the configuration for
finding all the solution for a CNF instance, the all-interval series
problem is only performed by Clasp.

Fig. 5 presents the result of different AMO encodings performed
by Clasp for finding all the number of solutions on all-interval
series instances. They show that, the AMO pairwise encoding is
clear better than the others on last two instances. On the contrary,
the AMO sequential counter encoding perform badly on last two
instances. The AMO product and binary encodings are quite poor,
while the others, AMO commander and bimander encodings are
rather good. Like the golomb ruler problem, the runtime is rather
related to the number of conflicts, whereas the number of conflicts
is strongly related to the number of decisions.
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Figure 2: Clasp on Langford problem.

Figure 3: Riss on satisfiable Hidoku instances.

4 CONCLUSIONS
The paper has two main contributions. Firstly, a significant insight
is the relationship between the auxiliary variables required by the
AMO SAT-encoding and the variables used by its corresponding
SAT encoding of finite CSP domains if it exists. As a result, one could

Figure 4: Lingeling on satisfiable Open Shop instances.

Figure 5: Clasp on all-interval series instances.

use a channeling constraint for the redundant and hybrid encoding.
For example, the auxiliary variables required by the AMO sequential
counter encoding are exactly the variables used by its corresponding
SAT encoding, the order encoding (see [38]). Consequently, these
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auxiliary variables can be used for the challenging constraint, which
is used by Sp–Or𝑟𝑒𝑑 and Sp–Orℎ𝑦𝑏 (see [7]).

Secondly, regardless of three SAT solvers on various benchmarks,
several important observations can be drawn through the empirical
study on SAT encoding of the AMO constraint:

• In terms of runtime, the AMO encodings are significantly
diverse. One AMO encoding may perform variously not only
on different benchmark but also on the same benchmark
(with different solvers) compared to the other encodings.

• In general the runtime is somewhat related to the number
of conflicts, whereas the number of conflicts is usually and
closely related to the number of decisions.

• Interestingly the runtime is rather related to the memory
used, i.e., an AMO encoding which performs faster may
consume less memory than a slower AMO encoding.

For future work, a possible research is to study how the num-
ber of disjoint subsets in some AMO encodings, consisting of the
product, bimander and commander encodings, could affect these
encodings in realistic problems. Based on the guidelines, the AMO
encodings should be more thoroughly tested to obtain some certain
guidelines. In particular, one may know which an AMO encoding
should be used for a particular type of problems, consequently the
encoding can achieve a high performance.
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